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ABSTRACT

This study compares the performance of Global Ensemble Forecast System (GEFS) and European Centre
for Medium-Range Weather Forecasts (ECMWF) precipitation ensemble forecasts in Brazil and evaluates
different analog-based methods and a logistic regression method for postprocessing the GEFS forecasts. The
numerical weather prediction (NWP) forecasts were evaluated against the Physical Science Division South
America Daily Gridded Precipitation dataset using both deterministic and probabilistic forecasting evalua-
tion metrics. The results show that the ensemble precipitation forecasts performed commonly well in the east
and poorly in the northwest of Brazil, independent of the models and the postprocessing methods. While the
raw ECMWEF forecasts performed better than the raw GEFS forecasts, analog-based GEFS forecasts were
more skillful and reliable than both raw ECMWF and GEFS forecasts. The choice of a specific postprocessing
strategy had less impact on the performance than the postprocessing itself. Nonetheless, forecasts produced
with different analog-based postprocessing strategies were significantly different and were more skillful and
as reliable and sharp as forecasts produced with the logistic regression method. The approach considering the
logarithm of current and past reforecasts as the measure of closeness between analogs was identified as the
best strategy. The results also indicate that the postprocessing using analog methods with long-term reforecast
archive improved raw GEFS precipitation forecasting skill more than using logistic regression with short-term
reforecast archive. In particular, the postprocessing dramatically improves the GEFS precipitation forecasts
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when the forecasting skill is low or below zero.

1. Introduction

Precipitation is an important source of water resources
and a major driving factor in the functioning of agricul-
ture, forest, and freshwater ecosystems. Accurate pre-
cipitation forecasting is one of the most sensible aspects of
weather prediction to the society. It strongly affects daily
decisions in different sectors, such as public health, water
resources, energy production, agriculture, and environ-
mental protection. Numerical weather prediction (NWP)
models are the state-of-art technology for forecasting
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medium-range precipitation at daily or subdaily time
step over the globe. Practically every aspect of the NWP
has dramatically improved (Hamill et al. 2013) over the
last decades, which has led to significant increments in
the skill of the model forecasts (Bauer et al. 2015), and
has encouraged their use in a wide range of applications.

NWP has global applicability (Bauer et al. 2015) and
potential for improving regional precipitation, runoff,
and water storage forecasting over the globe (e.g., Hamill
2012; Su et al. 2014; He et al. 2010; Cloke and
Pappenberger 2009). However, few studies have focused
on assessing the NWP precipitation predictability asso-
ciated with large and intense mesoscale convective systems
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(Bechtold et al. 2012), such as tropical rainfall. Atmospheric
convection is an essential process for understanding and
modeling the weather dynamics over the tropics (Bony et al.
2015), but one very difficult to analytically represent in
global NWP models (Bauer et al. 2015). The representation
of these processes is especially challenging over continental
areas from the Southern Hemisphere where the abundant
vegetation and the sparse observations for evaluation and
data assimilation have limited the models’ accuracy. Recent
progress in forecasting tropical convection (Bechtold et al.
2014; Subramanian et al. 2017) and the increasing quantity
and quality of global information encourage the use of
NWP for tropical precipitation forecasting. It is therefore
necessary to conduct comprehensive assessments of the
NWP’s ability to forecast heavy and highly variable rainfall
regimes in tropical and near-tropical regions dominated
by large mesoscale convective systems (Mohr and
Zipser 1996).

The National Centers for Environmental Prediction
(NCEP) Global Ensemble Forecast System (GEFS) and
the European Centre for Medium-Range Weather Fore-
casts (ECMWEF) are two leading NWPs for medium-range
weather forecasting at the global scale. In particular, the
ECMWEF global ensemble precipitation forecasts have
consistently been the most skillful in Northern Hemi-
sphere regions (Atger 2001; Hamill et al. 2008; Su et al.
2014) compared with those produced by other global
NWP models. An advantage of the GEFS model is that
it archives retrospective forecast (reforecast) datasets
for long past periods at no cost, which are useful for
statistically postprocessing to correct weather forecasts
against observed data, thus reducing the uncertainty and
improving forecast performance (Hamill et al. 2006;
Hagedorn et al. 2008). Statistical postprocessing methods
are commonly effective to amend systematic inconsis-
tencies in forecasts, while taking into account actual
modes of the spatial weather variability that are im-
possible to represent in NWPs (e.g., Glahn and Lowry
1972; Gneiting 2014; Pelosi et al. 2017). However, little is
yet known about the relative performance of GEFS and
ECMWEF precipitation forecasts, and the effectiveness
of the statistical postprocessing over the tropical and near
tropical regions dominated by large and intense meso-
scale convective systems.

Analog-based postprocessing methods are an efficient
approach to improve probabilistic precipitation fore-
casts (Voisin et al. 2010; Ben Daoud et al. 2016) and in
general several other hydrometeorological forecasts
(Tian and Martinez 2012, 2014). In one analog-based
implementation, the current forecast from a fixed NWP
is compared against the past forecasts of the same NWP
at a similar time of the year within a limited region, and
an ensemble is formed considering the observations on

JOURNAL OF HYDROMETEOROLOGY

VOLUME 20

the dates of the closest matches (Hamill et al. 2006).
Studies have explored different strategies for implementing
analog methods with GEFS reforecast, such as testing
different similarity criteria (Hamill and Whitaker 2006),
and multivariate (Hamill and Whitaker 2006; Delle
Monache et al. 2011, 2013) versus univariate similarity
metrics, and evaluating different sizes of the search re-
gion (Hamill and Whitaker 2006; Hamill et al. 2015; Tian
and Martinez 2012, 2014) and number of ensemble
members (Hamill et al. 2015). Nevertheless, guidelines
regarding the optimal implementing strategies to effi-
ciently postprocessing tropical convective precipitations
are still lacking.

A disadvantage of the analog approaches is that it
needs long-term reforecasts for finding the closest
matching analogs. When the forecasted precipitation is a
large, rare event, it becomes a challenge to find sufficient
number of analogs if the reforecast archive is not suffi-
ciently long enough (Hamill et al. 2015). There are al-
ternative approaches that are less reliant on the size of
the training data. The logistic regression method is one
of these methods and has been found suitable for dealing
with medium-range precipitation forecasts in several
regions (Wilks 2006; Wilks and Hamill 2007). Few pre-
vious studies have compared the relative performance of
analog techniques and logistic regression techniques for
postprocessing GEFS precipitation forecasts. For selecting
optimal postprocessing methods, it would be informative
to compare the performance of analog methods, which
requires long-term reforecast archives, with logistic
regression, which only needs a small set of training data.

Given the research gaps we have identified, this study
aims to 1) document the performance of the GEFS and
ECMWEF daily precipitation ensemble forecasts using
Brazil as case study, 2) evaluate the GEFS-based precip-
itation forecasts postprocessed using analog methods with
different strategies, and 3) compare the performance of
analog-based methods with the logistic regression method.

Brazil covers a large area and is considerably affected
by large and intense mesoscale convective systems within
which severe weather events develop (Mohr and Zipser
1996). The complexity of the spatial and temporal vari-
ability of rainfall patterns over Brazil may provide a unique
setting for assessing progresses of global scale NWPs
and postprocessing techniques for rainfall prediction.

2. Data and methods
a. Study region

Brazil is one of the mega-diverse countries and the
world’s fifth-most populous. It has the second-largest forest
area in the world (FAO 2015), is a country with high risks of
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transmission of water-borne diseases (e.g., Guerrant et al.
1983), is one of the top hydropower-potential countries
(Zhou et al. 2015), and is one of the world’s main pro-
ducers of food and biofuels (Ferreira et al. 2012). It ranks
first in production of sugarcane, coffee, and oranges and
sixth in the world’s cereal production (FAO 2015). Given
the significant impact of precipitation in those sectors,
forecasting medium-range daily precipitation for Brazil
has great implications for its agriculture, natural resources,
hydropower generation, and public health management.
The study focused on the six major natural biomes of
Brazil: Amazon, Caatinga, Cerrado, Atlantic Forest,
Pampa, and Pantana, representing climatologically con-
sistent regions (Fig. 1). A brief description of each biome
is provided as follows:

1) The Brazilian Amazon covers around 4 million km?
(almost half the national territory), representing
69% of the Amazon basin. Annual rainfall is gener-
ally above 2000 mm and decreases from the equato-
rial regions toward the tropics and the northeast of
Brazil (under 1500 mm).

2) Caatinga is among the semiarid regions with larger
population and biodiversity in the world (MMA 2011).
Annual rainfall is commonly less than 750 mm (Leal
et al. 2005), and it is highly variable (Moura and Shukla
1981). The region experiments a peculiar intra-annual
rainfall regime, with a maximum in March—April over
the north and the center part and in November—March
over the southern part.

3) Cerrado s a tropical savanna covering 22% of Brazil’s
territory. The overall amount of rain is usually be-
tween 800 and 2000mmyr ' (Ratter et al. 1997),
mostly distributed between October and April.

4) Atlantic Forest is the second-largest rain forest of the
American continent and one of the world’s regions
hosting the biggest biodiversity. Annual rainfall is
between 1000 and 3000 mm.

5) The Brazilian Pampa represents 2.07% of the na-
tional territory and lies within the South Temperate
Zone (Roesch et al. 2009). The annual precipitation
in the region is around 1200-1600 mm.

6) The Pantanal wetland is a complex of seasonally
inundated floodplains along the upper Paraguay River,
located mostly in Brazil (Hamilton 2002). Annual
rainfall is 1000-1500 mm across the basin, with most
rainfall occurring between November and March.

b. Verification dataset

The choice of the verification dataset is important in
the context of medium-range forecasting, especially in
data-sparse regions affected by complex patterns of
variability. Using gridded data based on rain gauge
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FIG. 1. Regions of Brazil involved in this study corresponding to the
six major natural biomes as defined in IBGE (2004).

observations has the advantage of being independent of
all models (Hagedorn et al. 2012). Carvalho et al. (2012)
found that the Physical Science Division South America
Daily Gridded Precipitation dataset (Liebmann and
Allured 2005; Liebmann and Allured 2006) consistently
represents the variability of the South American mon-
soon system, which is the most important climatic fea-
ture in South America, and provides a similar spatial
pattern of mean precipitation compared with other
gridded precipitation products such as the Global Pre-
cipitation Climatology Project (Huffman et al. 2001) and
Climate Prediction Center unified gauge (Silva et al.
2007). In this study, we use this dataset for evaluating
rainfall forecasts over each biome in Brazil. It consists
of 1° X 1° grid of daily precipitation values over Brazil
over 1985-2010, interpolated using the average of rain
gauge records within a geographic ellipse. Measure-
ments have been taken at 1200 UTC, while pre-
cipitation is recorded as having occurred on the day on
which the rain gauge reading is taken. This dataset is
available at http://www.esrl.noaa.gov/psd/data/gridded/
data.south_america_precip.html. Figure 2 shows the
cumulative probabilistic distribution of the daily pre-
cipitations over each biome generated from the verifi-
cation dataset.

Itis worth noting that at least two other datasets based
on rain gauge observations are available for Brazil. Silva
et al. (2007) produced the Climate Prediction Center
unified gauge. This is a 1° X 1° dataset using a Cressman
(1959) scheme of interpolation (Glahn et al. 1985) that
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corrects the background gridpoint value by a linear com-
bination of residuals between calculated and observed
values. However, this dataset has fewer rain gauges
over the Brazilian Amazonian domain compared to the
adopted dataset (see Fu et al. 2013). Recently, Xavier
et al. (2016) produced a high-resolution dataset over
a 0.25° X 0.25° grid based upon the inverse distance
weighting interpolation method; this method had been
identified as the most skillful when compared against several
other methods. However, the grid coordinates in this dataset
do not coincide with the grid coordinates of the forecast
datasets in our study, meaning that a further interpolation
would be needed to use it as our verification dataset.

c. Forecast datasets

1) GEFS REFORECAST DATA

We used 1° X 1° gridded reforecasts over 1985-2010
(26 years) produced from the second-generation global
medium-range ensemble reforecast dataset (Hamill
et al. 2013). This a retrospective weather forecast data-
set generated with the currently operational NCEP
GEFS, available at http://esrl.noaa.gov/psd/forecasts/
reforecast2/download.html. The daily precipitation en-
semble reforecasts considered both the control forecast
and the 10 perturbed forecasts issued at 0000 UTC at
1.5-, 3.5-, and 5.5-day leads. A lead time of 1.5 days
matches up the observation of day # with the sum of the
6-h total precipitation at 18, 24, 30, and 36 h of the
forecast issued at day n — 1.

2) ECMWF FORECASTS DATA

ECMWEF reforecasts archived in the TIGGE database
at ECMWF (see http://apps.ecmwf.int/datasets/data/tigge)
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were also considered. We used the 50-member ensem-
bles of perturbed ECMWF forecasts issued at 0000 UTC
over October 2006-10 at lead times of 1.5, 3.5, and
5.5 days. Forecasts, which originally have a horizontal
resolution of about 32 km, were converted into a 1° X 1°
grid before downloading, using the software available
at the ECMWF website. About 2.0% of the records
accounted for negative, mostly negligible values, which
were set to zero. Probabilities were also calculated di-
rectly from the ensemble relative frequency

d. Postprocessing methods

1) THE ANALOG FORECAST METHOD

In the analog forecast method, the real-time forecast
is adjusted using a long time series of past forecasts and
associated observations (Hamill et al. 2015). Suppose
that we want to produce an ensemble of n analog fore-
casts for today’s forecast at a specific point and a given
lead. The first step is to compare today’s forecasts
within a region surrounding that point with the forecasts
from the historical reforecast archive in that same region
and at the same forecast lead, and then find the n dates
with the best matching. In a second step, the analog
ensemble is formed from the verification dataset on
those dates. This process is repeated for each lead day
and location across the study region, and the forecast
over the grid point is produced by grouping together the
analog forecasts (Hamill et al. 2006; Tian and Martinez
2014). Notice that in some analog-based applications the
resolution of the verification dataset is considerably
larger than that of the forecast dataset, such that the
search region is linked to a tile of verification data points
rather than just one point. In applications like these, the
procedure of tiling the analog forecasts may lead to
spatial inconsistencies at the boundaries between tiles
(Hamill and Whitaker 2006; Hamill et al. 2006). How-
ever, this is not an issue present in this study. Leave-one-
out cross validation are carried out by excluding the current
year from the list of potential analogs. For a detailed
description and theoretical basis of the analog method,
the readers can refer to Hamill and Whitaker (2006).

2) LOGISTIC REGRESSION METHOD

In the logistic regression (LR) method a nonlinear
function is fitted to past pairs of the predictor(s), and
the predictand, which as an observed value takes on a
probability of either 1.0 (event occurred) or 0.0 (event
did not occur), according to the adopted threshold T
(Wilks 2006). The fitted function is then used to estimate
the probability P that the current unknown observed
amount O be higher than the threshold 7 given the
current predictor values, associated to the forecast.
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TABLE 1. Configurations of the six analog approaches. Parameters FF";r’ and Fi are the 24-h cumulative precipitation (pr) and the total-
column precipitable water (pw) forecasts, respectively, at time ¢ and over grid point i, while F]‘;rtc and Fl‘;x: are the corresponding forecasts at
current time (tc) (involving the current grid point and the set of N, supplemental points surrounding the current grid point) and time z.

ID_Method Ensemble size Grid points Closeness metric
N+ 1
8 ) s
Control 50 9 ; ( F;’,; _ F];.;c
Short 50 5 B e ey
ort_reg ; (F ;’,} —F fa}c
100_E 100 9 K ey
_Ens ; (F;r _F]r),rc
LogF 50 9 N e 4 2
L, — ,1c
g Zi [log(Fyy +1) — log(Fy* + 1)]
N, +1
Prec_water01 50 9 09%4/ 3 ( Fit — FS}C)Z +0.1X%
i=1
et
Prec_water05 50 9 05X 4/ Y (Fi—Fp) +05X%
i=1

In this study we adopted the same nonlinear function as
Hamill et al. (2008):

P(O>T)=1-1/[1+exp(a+bF)” + ca%pzrs)], @)
where Fpr and o, Tepresent the mean and the standard
deviation of the ensemble of precipitation forecast, re-
spectively, while a, b, and ¢ are the fitting parameters.
Following Hamill and Whitaker (2006), we also pondered
using a one-half power transformation of the predictors,
instead of the one-quarter adopted here, but our results
were practically the same.

As for the analog method, the logistic regression
technique is performed separately for each location and
each forecast lead time, within the verification period
using all historical data available.

e. Experimental design

The first experiment is to compare the performance of
GEFS and ECMWEF raw forecasts, as well as GEFS
analog forecasts over January, April, July, and October,
from October 2006 to December 2010. These four
months are representative of the summer, fall, winter,
and spring season, respectively. In this and the subse-
quent experiments, training of the GEFS forecasts
considered the 26-yr dataset of retrospective forecasts.
The analog forecasts for a current date and time were
formed by finding the lowest sum of the square differ-
ences (ssd) between the current forecasts and the similar
historical forecasts in the other years (25 in total) from
the reforecast archive, considering a limited region of
9 grid points. Preliminary analyses showed that by con-
sidering tiles of 21 grid points (i.e., those located at a
distance lower than 2/2° with respect to the current grid
point), the results tended to be slightly worse compared

with 9 grid points, especially at 1.5 and 3.5 days and
during rainy days. Hamill et al. (2015) suggested using
relatively small grids for short lead times and under
scenarios of heavy rainfalls. The forecasts were selected
within a +45-day window around the date of the fore-
cast, and the best 50 analogs were chosen to construct
the forecast ensemble. The size of the window takes into
consideration the rainfall seasonality over the region (e.g.,
Espinoza Villar et al. 2009), and the fact that the forecast
bias might considerably change across seasons. A size of
the ensemble of 50 members seems reasonable following
the results of Hamill et al. (2015); in our study it represents
just the 2% of the search period (of 91 days X 25 years).
This analog procedure is adopted as the control variant of
the method and referred henceforth as “Control” forecast.

The second experiment is to conduct an intercompari-
son among six GEFS-based analog approaches and one
logistic regression method. In this case, the forecasts were
verified over January, April, July, and October from 1985
to 2010. The six analog-based methods included the Con-
trol method plus five modified versions of this procedure
(see Table 1), with each version considering only one
modification with respect to the Control procedure. Each
method is described as follows:

1) Short_reg considered a search region with five grid
points, that is, the current grid point and the four
adjacent grid points at a distance of 1°.

The 100_Ens was produced with 100 analog mem-
bers, instead of only 50.

LogF considered the differences between the logarithm
of the current and past precipitation forecasts plus one,
as the measure of the closeness among forecasts.
Prec_water(O1 included the mean ensemble of the
column precipitable water as a predictor variable.

2)

3)

4)
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FIG. 3. (a) Correlation and RMSE (mm) of the GEFS precipitation raw forecasts at each biome in January (1),
April (4), July (7), and October (10), for lead times of 1.5, 3.5, and 5.5 days, and (b) differences between correlation
and RMSE of the ECMWF raw forecasts as well as the Control calibrated forecasts and the GEFS raw forecasts.

The analogs were produced by pondering the 90% of
the ssd of total precipitation plus the 10% of the ssd
of precipitable water.

5) Prec_water05 is similar to Prec_water(01, but consid-
ering the 50% of ssd of both total precipitation and
precipitable water.

Besides these five methods, we had pondered the rank
analog technique (Hamill and Whitaker 2006), which
used the differences between the rank of the precipitation
forecasts within the search region as the similarity mea-
sure. However, this method was found unsuitable for the
conditions of Brazil and was therefore excluded. By
matching ranks instead of the actual values, many
members of the analog ensemble corresponded to dates
whose precipitations over the search region follows the
same order (rank) compared to the current day, but whose
total amounts are dramatically different. For example, the
method often matched a heavy rainfall at the current day
with drizzle in the past.

f- Verification analysis

In this study we compare point and regionally aggre-
gated values (see Medina et al. 2018) of several deter-
ministic and probabilistic metrics. For the deterministic

metrics, we used the mean error (ME), the root-mean-
square error (RMSE), and correlation coefficient p,
which are among the most commonly reported measures
of agreement between forecasts and observations. For
the probabilistic metrics we used the Brier skill score
(BSS) and the reliability diagram (e.g., Toth et al. 2003;
Wilks 2011) associated with the precipitation events
above 2.5mm. In the study the forecast probability is
calculated from the ensemble forecast, while the clima-
tological probability is computed as an average proba-
bility taken over =30 days of the forecast date. A
bootstrapping procedure involving 1000 samples was
used to quantify the uncertainty of the probabilistic
statistics (see Medina et al. 2018).

3. Results and discussion

a. Intercomparisons between GEFS, ECMWF, and
Control analog postprocessed forecasts

Figure 3 shows the average correlation and RMSE of
the raw GEFS forecasts in each region, and their differ-
ences with the ECMWEF forecasts and the Control analog
forecasts. The average correlation varied especially among
regions: from high values over Atlantic Forest and Pampa
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to very weak values over Amazon. The RMSE was pro-
portional to the total rainfall and therefore more season-
ally driven, with maximums during warm seasons, and
minimums during cold seasons. Janowiak et al. (2010)
noted very weak correlation between the ECMWF and
GEFS forecasts and the Global Precipitation Climatology
analyses over the northwest of South America in warm
seasons. The ECMWF and GEFS raw forecasts performed
comparably at 1.5 days, but the former performed better,
even compared with the Control analog forecasts, at 3.5 and
5.5 days. The performance of the GEFS forecasts mostly
improved through postprocessing; the analog control fore-
cast provided the best correlation and RMSE at 1.5 days.
Moreover, as indicated in Fig. 4, the Control analog GEFS
forecasts showed greater ME than both GEFS and
ECMWEF raw forecasts. They tended to underestimate the
precipitations in most regions, seasons, and lead times.

Figure 5 presents the distribution of the bootstrapped
BSS values over each region and month at lead times of
1.5 and 5.5 days. The Control analog forecasts in most
cases improved the BSS compared to the raw ensemble
forecasts. The improvements tend to be higher over
regions and seasons, such the spring month in Amazon
and the fall month in Pantanal, where raw forecasts are
less skillful. Practically all the Control analog forecasts
provided a positive BSS, although it was still close to
zero in Amazon. The raw ECMWF forecasts showed
higher probabilistic forecast skill than the raw GEFS
forecasts at 3.5 and 5.5 lead days, but lower at 1.5 days.
Both of the ECMWF and GEFS raw forecasts showed
no skill over Amazon and Pantanal at any lead time,
indicating that the climatological predictions are better
here compared to the raw forecasts. This result is con-
sistent with the study based on regional ensemble fore-
casts over South America (Ruiz et al. 2009). The reason
for that is due to the convection in the Amazon exhibiting
more pronounced diurnal and seasonal variability than in
the east region (Jones and Schemm 2000).

To provide a better insight in space, Fig. 6 shows the
differences between the Brier scores of the raw ECMWF
and GEFS ensemble forecasts at each grid point. Positive
differences indicate the GEFS forecasts are better, since
the lower the Brier score the better the forecasts. The
ECMWEF forecast seems relatively weak over the northwest,
mainly at 1.5 days, probably due to issues with the model
representation of the daily precipitation cycle over
Amazon (Betts and Jakob 2002a,b). Similarly, the
GEFS forecast are unskillful over this region as well. The
differences in October, a period associated with the onset
of the precipitations in most Brazil (Marengo et al. 2001;
Grimm and Zilli 2009), are the most favorable for the
GEFS forecasts, while those in January (a period of higher
convection) are the most unfavorable, at both lead times.
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C. Analog GEFS

The ECMWEF forecasts at 3.5 and 5.5 days in several
cases provided better RMSE and BSS than the forecasts
at 1.5 days, while the bias of the ECMWF at 5.5 days
tended to be negative while the bias at 1.5 days is posi-
tive (Fig. 4). These trends were not observed for the raw
and postprocessed GEFS forecasts. This finding is con-
sistent with Janowiak et al. (2010), who found that the
9-day ECMWF raw forecasts had lower bias than the
day-2 forecasts over much of central South America. To
investigate what caused the better performance at lon-
ger lead times, we analyzed the spread-skill relation-
ships of different forecasts at 1.5 and 5.5 leads, by
comparing the average standard deviation of the en-
sembles to the RMSE of the ensemble means for dif-
ferent intervals of the deviations (Fig. 7). The result
showed that, while the spread of the GEFS ensembles
(both, raw and postprocessed) was similar at different
lead times, the ECMWF ensembles at 1.5 lead days were
more underdispersed than 5.5 lead days. The wider spread
of the ECMWF ensemble forecasts at longer lead times
compared to shorter lead times may cause the better
performance for longer lead times. The results also
suggest that the forecast postprocessing with the analog
technique considerably improves the spread-skill re-
lationship of the ensembles.
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FIG. 5. BSS of the raw GEFS and ECMWF and the Control analog precipitation in (from left to right) January
(blue), April (yellow), July (green), and October (red) for lead times of 1.5 and 5.5 days.

Figure 8 shows the reliability diagrams over January at
lead days of 1.5 and 5.5. In general, the forecasts were
slightly less reliable in drier months when high-probability
precipitation forecasts are issued less frequently. The

postprocessed forecasts were considerably more reliable
but less sharp than raw forecasts. The frequency of
medium-probability forecasts grows after postprocessing
mainly at the expense of the high-probability forecasts, as
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FIG. 6. Differences between the ECMWF and the GEFS BSS for 1.5 and 5.5 lead days.

found by Hamill et al. (2008). The GEFS and ECMWF
raw forecasts provided similar reliability at 1.5 lead days,
while the former one seemed slightly less reliable at
5.5 days. While the reliabilities are not considerably
changed with lead times, the sharpness at shorter lead
times is slightly higher than longer lead times, especially
for the ECMWF forecasts. This may be caused by the
narrower ensemble spread at shorter lead times. It
is also worth noting that through postprocessing, the

reliability of the precipitation forecasts improved more
than the skill score, which is in agreement with previous
studies based on, either analog postprocessing tech-
niques (e.g., Voisin et al. 2010), or other methods
(Hamill et al. 2008).

In summary, the Control analog forecasts consider-
ably improved the probabilistic forecasting performance
but more systematically biased compared to the GEFS
and ECMWF raw forecasts. They were also slightly less
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FI1G. 7. RMSE of the ensemble forecasts vs the mean standard deviation s of the ensemble members over all grid points and at 1.5 and
5.5 lead days for (from left to right) raw GEFS, raw ECMWEF, and Control analog forecasts.
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FIG. 8. Reliability diagrams of the GEFS and ECMWF raw forecasts, and the Control analog forecasts for January for days +1.5 and +5.5.

correlated with observations and less accurate than the
ECMWEF forecasts at 3.5 and 5.5 days. The performance
of the raw ECMWF and GEFS forecasts was comparable
a 1.5-day lead, but the ECMWF forecasts performed
better at the longer lead times.

b. Comparing multiple analog approaches and the
logistic regression approach

Figure 9 shows cumulative probability distributions
of the correlations, the ME, and the RMSE using raw
GEFS forecasts and the six analog approaches over
January and at 1.5-day lead. The trends were similar
across different regions and lead times. The analog
forecasts improve the correlation and the RMSE com-
pared to the raw forecasts, while they are more biased

than the raw forecasts. This last is a deficiency princi-
pally caused by the skewness of the density distribution
of the forecast precipitation (e.g., Scheuerer and Hamill
2015), meaning that the probability density of lighter
precipitation events in a neighborhood around the mean
is higher than the probability of heavier events. The used
loss function, that is, the squared differences between
current and past forecasts, might have also contributed
to that issue, since it tends to provide large penalties to
the large discrepancies (Casella and Berger 2002). Hence,
reforecasts associated to lighter events are more likely to
be (indirectly) represented in the analog ensembles (e.g.,
Hamill and Whitaker 2006).

A paired sample ¢ test was conducted to compare the
performance of the six analog forecasts. The result



APRIL 2019 MEDINA ET AL. 783
T —— T 7T
i Raw GEFS 11
—e— Control
0.8 | |--—-Short_reg 1L
—0- 100_Ens
—A--Log F
0.7r1 Prec_water0l 1
Prec_water05

2
05|
O
2
o4t

L 1

e

|
T

T4
L

0 0.2 04
Correlation

0 5 10 15
RMSE (mm)

FIG. 9. Cumulative distribution of the correlations, ME, and RMSE for the raw and analog GEFS forecasts at 1.5 lead days in January.

shows that the differences of the six analog methods are
small in correlation and ME but mostly significant at the
1% significance level; the differences in RMSE values
are less significant, especially for comparisons among
the Control, Sort_reg, and Prec_waterO1 approaches.
The changes in ME and RMSE after postprocessing
seemed roughly constant among grid points, while the
correlation improved more over grid points with higher
correlations, that is, regions with better correlation were
more benefited through postprocessing. Among all the
six methods, the 100_Ens and LogF forecasts commonly
provided the best correlations and ME and RMSE,
respectively. In most cases, the Prec_water05 forecasts
perform the worst among all the analog forecasts.

For probabilistic forecasts, all the analog forecasts, as
well as the LR forecasts considerably improved the BSS
compared to the raw forecasts (Fig. 10). The improve-
ments were similar but mostly significantly different at
1% significance level. In agreement with previous
studies (e.g., Hamill and Whitaker 2006; Delle Monache
et al. 2013), the forecasts produced with analog methods
provided better skill compared to the logistic regression.
Only the Prec_water05 forecasts performed similarly or
slightly worse than the LR forecasts. While the 100_Ens
forecasts commonly provided better BSS over West
regions, where the skill is consistently low, the Log_F
forecasts provided better skill over the East regions. The
average BSSs were mostly below 0.3, and affected by the
considerable spatial and temporal variability of the BSS

(Fig. 11). As suggested by the maps of Brier score of the
climatology in Fig. 12, this variability seemed associated
with the climate predictability. Climate predictability
changes from high in the winter all over the center of
Brazil to very low in summer practically all over the
country. It is influenced by the interannual migration of
deep tropical convection from the central and southern
portion of the Amazon basin in summer to the north-
western sector of South America in winter (Rao and
Hada 1990).

Figure 13 shows the reliability diagrams of the raw and
postprocessed forecasts over January at 1.5 days lead.
The postprocessed forecasts performed very similarly:
they were considerably more reliable but less sharp than
the raw forecasts. Only the 100_Ens forecasts showed a
slightly dry bias over a few regions. Our postprocessed
forecasts are slightly more reliable than the analog
forecasts from Hamill and Whitaker (2006) and the lo-
gistic regression forecasts from Hamill et al. (2008),
probably due to the new improvements of the GEFS
model compared to its first version (Hamill et al. 2015).

c¢. Discussing analog postprocessing methods for
precipitation forecasts

While the comparison between raw and postprocessed
forecasts in section 3a only involved one analog approach,
the results from this comparison also seemed valid for the
other postprocessing methods. This is because the differ-
ences among postprocessing methods were lower than the
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method in the six regions.

differences among raw and postprocessed forecasts.
Nonetheless, different methods in most cases provided
significantly different statistics, allowing us to identify
a best and a worst strategy. In Table 2 we show the
number of experiments (of a total of 72, i.e., 6 regions X
4 months X 3 lead times) where each analog approach
performed best and worst in terms of correlation, ME,
RMSE, and BSS. We also provide a ranking of the
methods by sorting the differences between totals, from
better to worse. The LR-based performance was con-
sidered when comparing the BSS, but not ranked. LogF
was identified as the best approach, ranking as the best
or the second best in terms of all the performance sta-
tistics. Taking the logarithm of the mean precipitation

is a way of partially addressing the issues associated to
the skewness of the forecast density distribution, by
making the approach less prone to penalize the heavier
events with respect to the lighter events. This confirms
the results of Foresti et al. (2015) for who the logarithmic
transformation is necessary to get a suitable represen-
tation of the forecast uncertainty.

The 100_Ens approach was the second best since it
provides the highest BSS and correlations but also has
relatively large ME and RMSE. The larger the sample of
ensemble members, the better the probabilistic descrip-
tion of the events, but also the larger the issues for finding
sound analogs on rainy days, especially for regions with
lower pluviometry. Therefore the choice between the



APRIL 2019 MEDINA ET AL. 785

Lead time = 1.5 days Lead time = 3.5 days Lead time = 5.5 days
0 W 0 0
e
-1
= [=] [+] [s]
85 S 15 S 15 S
-
30 S 30°S 30 S
0 0
15 S 15" S
30 S 30’ S
0 0
15 S 15" S
30 S 30" S
00
5
n [+]
8 15" S
o
30 S
01 0 0.1 02 03 04 05 06

FIG. 11. BSS values of the basic analog technique in space from 1985 to 2010.



786

January

JOURNAL OF HYDROMETEOROLOGY

VOLUME 20

FIG. 12. Brier score of the climatology in space; 2.5 mm is used as a threshold.

LogF and the 100_Ens scheme might be subject to the
specific purposes of the application. These results led to
the question whether an analog method combining
the modifications adopted in Log_F and 100_Ens (100_
Ens-LogF) improve the performance compared to each
of these two approaches. We found that it slightly im-
proved the performance of the original approaches by
taking advantage of their best features, since it is less vul-
nerable than the 100_Ens method to large deterministic
errors because of the log transformation, and at the same
time performs probabilistically slightly better because of
the larger sample size. It provided consistently better BSS
than the Log_F and 100_Ens strategies, although the im-
provements only affected the third significant figure. It also
improved the ME compared with the 100_Ens strategy,
but not compared with the Log_F strategy.

Finally, the Prec_water05 scheme performed worst
for most statistics, especially during fall and winter times

(e.g., Fig. 10), distantly followed by the Short_reg scheme.
Studies suggest that there is a weak relationship between
precipitable water and precipitation in most regions
(e.g., Rao and Da Silva Marques 1984; Teixeira and
Satyamurty 2007), presumably because of the complex
regimes of water vapor and rainfall, which are generally
regulated by the ocean on the east, a steep orography on
the west, and the Amazon forest on the north (Berbery
and Collini 2000; Rao et al. 1996).

4. Concluding remarks

This study conducted intercomparisons between raw
GEFS forecasts, raw ECMWEF forecasts, and postprocessed
GEEFS forecasts with six analog methods and the logistic
regression method over six biome regions in Brazil. To
the authors’ knowledge, this study is the first to compre-
hensively examine the performance of these global-scale
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G. 13. Reliability diagrams for the GEFS-based precipitation forecasts in January. Each panel indicates each reliability diagram

of the methods including raw GEFS, six analog methods, and logistic regression.

NWP models and statistical postprocessing methods
over South America, specifically over a region severely
affected by large mesoscale convective systems.

The article showed that the global-scale NWP’s raw
forecasts are helpful for precipitation forecasting over
the east, and particularly the southeast, of Brazil, but
unskillful over the northwest. The ECMWF raw forecasts
are better than the GEFS raw forecasts since they per-
form similarly or better over the east. However, the

postprocessed GEFS forecasts, particularly the analog
forecasts, are strongly recommended over the raw
ECMWEF forecasts as they performed probabilistically
much better; unlike the raw forecasts they improved the
skill of climatological forecasts in all the evaluated re-
gions, seasons and lead times. Our results also confirmed
previous findings showing that the analog forecasts tend
to be negatively biased: this study suggests that the larger
the size of the analog ensemble, the higher the bias.

TABLE 2. Number of experiments (considering 6 regions, 4 months, and 3 lead times) where the alternative analog approaches performed
the best and worst in terms of different metrics.

Correlation ME RMSE BSS
Method Best Worst Best Worst Best Worst Best Worst Ranking

Control 2 3 0 3 2 1 1 1 4
Short_reg 1 22 3 2 2 4 0 9 5
100_Ens 57 1 0 33 8 16 37 1 2
LogF 7 1 60 0 48 2 24 0 1
Prec_water01 3 1 4 1 11 4 5 0 3
Prec_water(05 2 44 5 33 1 45 3 28 6
LR 2 33
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The forecast performance showed less sensitivity to
the postprocessing strategy than to the postprocessing
itself. Nevertheless, different postprocessing strategies
are significantly different statistically, with the analog
forecasts being as reliable as the logistic regression
forecast but slightly more skillful. The strategy considering
the log of current and past reforecasts as the measure of
closeness performed slightly better among all the analog
forecasts, followed by that considering 100 analog mem-
bers (instead of the regular 50). The analog method com-
bining modifications adopted in these two approaches
performed slightly better than the individual approaches,
whereas the strategies that included precipitable water as a
predictor variable were among the worst.

This study provides useful information for precipita-
tion forecasting over tropical and subtropical regions
affected by large mesoscale convective systems. While
we have addressed the impact of the forecast uncertainty
on the performance by using bootstrap analysis, we have
not addressed the impact of the verification dataset
uncertainty. The quality of interpolated datasets in data-
sparse regions is always a source of concern. While we
tried several analog-based schemes, new analog strate-
gies are emerging in literature, which may further
improve the precipitation forecasting in Brazil. For ex-
ample, the hybrid NWP-analog method (Eckel and
Delle Monache 2016), seizes both the strengths of the
numerical weather prediction ensemble and the analog
ensemble, and could be used for efficiently combining
the ECMWF and GEFS raw forecasts. Recent ap-
proaches also explore methods based on different
synoptic-scale predictors (Horton and Bréonnimann 2019;
Horton et al. 2018; Ben Daoud et al. 2016), such as the
geopotential height, and temperature, while excluding
precipitation as a predictor, as a way to avoid common
issues with precipitation reanalysis (e.g., Caillouet
et al. 2016).

More research is needed for further decreasing the
forecasting uncertainty, especially over the Amazon.
We foresee future studies will evaluate the efficacy of
multimodel forecasts and other postprocessing methods
with the consideration of the uncertainty from the ver-
ification dataset, in particular focusing on the methods
that can perform well with much shorter training
datasets.
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