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ABSTRACT

This study compares the performance of Global Ensemble Forecast System (GEFS) and European Centre

for Medium-Range Weather Forecasts (ECMWF) precipitation ensemble forecasts in Brazil and evaluates

different analog-based methods and a logistic regression method for postprocessing the GEFS forecasts. The

numerical weather prediction (NWP) forecasts were evaluated against the Physical Science Division South

America Daily Gridded Precipitation dataset using both deterministic and probabilistic forecasting evalua-

tion metrics. The results show that the ensemble precipitation forecasts performed commonly well in the east

and poorly in the northwest of Brazil, independent of the models and the postprocessing methods. While the

raw ECMWF forecasts performed better than the raw GEFS forecasts, analog-based GEFS forecasts were

more skillful and reliable than both rawECMWF andGEFS forecasts. The choice of a specific postprocessing

strategy had less impact on the performance than the postprocessing itself. Nonetheless, forecasts produced

with different analog-based postprocessing strategies were significantly different and were more skillful and

as reliable and sharp as forecasts produced with the logistic regression method. The approach considering the

logarithm of current and past reforecasts as the measure of closeness between analogs was identified as the

best strategy. The results also indicate that the postprocessing using analogmethodswith long-term reforecast

archive improved rawGEFS precipitation forecasting skill more than using logistic regressionwith short-term

reforecast archive. In particular, the postprocessing dramatically improves the GEFS precipitation forecasts

when the forecasting skill is low or below zero.

1. Introduction

Precipitation is an important source of water resources

and a major driving factor in the functioning of agricul-

ture, forest, and freshwater ecosystems. Accurate pre-

cipitation forecasting is one of the most sensible aspects of

weather prediction to the society. It strongly affects daily

decisions in different sectors, such as public health, water

resources, energy production, agriculture, and environ-

mental protection. Numerical weather prediction (NWP)

models are the state-of-art technology for forecasting

medium-range precipitation at daily or subdaily time

step over the globe. Practically every aspect of the NWP

has dramatically improved (Hamill et al. 2013) over the

last decades, which has led to significant increments in

the skill of the model forecasts (Bauer et al. 2015), and

has encouraged their use in a wide range of applications.

NWP has global applicability (Bauer et al. 2015) and

potential for improving regional precipitation, runoff,

and water storage forecasting over the globe (e.g., Hamill

2012; Su et al. 2014; He et al. 2010; Cloke and

Pappenberger 2009). However, few studies have focused

on assessing the NWP precipitation predictability asso-

ciatedwith large and intensemesoscale convective systemsCorresponding author: Di Tian, tiandi@auburn.edu
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(Bechtold et al. 2012), such as tropical rainfall. Atmospheric

convection is an essential process for understanding and

modeling theweather dynamics over the tropics (Bony et al.

2015), but one very difficult to analytically represent in

global NWPmodels (Bauer et al. 2015). The representation

of these processes is especially challenging over continental

areas from the Southern Hemisphere where the abundant

vegetation and the sparse observations for evaluation and

data assimilation have limited themodels’ accuracy. Recent

progress in forecasting tropical convection (Bechtold et al.

2014; Subramanian et al. 2017) and the increasing quantity

and quality of global information encourage the use of

NWP for tropical precipitation forecasting. It is therefore

necessary to conduct comprehensive assessments of the

NWP’s ability to forecast heavy and highly variable rainfall

regimes in tropical and near-tropical regions dominated

by large mesoscale convective systems (Mohr and

Zipser 1996).

The National Centers for Environmental Prediction

(NCEP) Global Ensemble Forecast System (GEFS) and

the European Centre for Medium-Range Weather Fore-

casts (ECMWF) are two leading NWPs for medium-range

weather forecasting at the global scale. In particular, the

ECMWF global ensemble precipitation forecasts have

consistently been the most skillful in Northern Hemi-

sphere regions (Atger 2001; Hamill et al. 2008; Su et al.

2014) compared with those produced by other global

NWP models. An advantage of the GEFS model is that

it archives retrospective forecast (reforecast) datasets

for long past periods at no cost, which are useful for

statistically postprocessing to correct weather forecasts

against observed data, thus reducing the uncertainty and

improving forecast performance (Hamill et al. 2006;

Hagedorn et al. 2008). Statistical postprocessing methods

are commonly effective to amend systematic inconsis-

tencies in forecasts, while taking into account actual

modes of the spatial weather variability that are im-

possible to represent in NWPs (e.g., Glahn and Lowry

1972; Gneiting 2014; Pelosi et al. 2017). However, little is

yet known about the relative performance of GEFS and

ECMWF precipitation forecasts, and the effectiveness

of the statistical postprocessing over the tropical and near

tropical regions dominated by large and intense meso-

scale convective systems.

Analog-based postprocessing methods are an efficient

approach to improve probabilistic precipitation fore-

casts (Voisin et al. 2010; Ben Daoud et al. 2016) and in

general several other hydrometeorological forecasts

(Tian and Martinez 2012, 2014). In one analog-based

implementation, the current forecast from a fixed NWP

is compared against the past forecasts of the same NWP

at a similar time of the year within a limited region, and

an ensemble is formed considering the observations on

the dates of the closest matches (Hamill et al. 2006).

Studies have explored different strategies for implementing

analog methods with GEFS reforecast, such as testing

different similarity criteria (Hamill and Whitaker 2006),

and multivariate (Hamill and Whitaker 2006; Delle

Monache et al. 2011, 2013) versus univariate similarity

metrics, and evaluating different sizes of the search re-

gion (Hamill andWhitaker 2006; Hamill et al. 2015; Tian

and Martinez 2012, 2014) and number of ensemble

members (Hamill et al. 2015). Nevertheless, guidelines

regarding the optimal implementing strategies to effi-

ciently postprocessing tropical convective precipitations

are still lacking.

A disadvantage of the analog approaches is that it

needs long-term reforecasts for finding the closest

matching analogs.When the forecasted precipitation is a

large, rare event, it becomes a challenge to find sufficient

number of analogs if the reforecast archive is not suffi-

ciently long enough (Hamill et al. 2015). There are al-

ternative approaches that are less reliant on the size of

the training data. The logistic regression method is one

of thesemethods and has been found suitable for dealing

with medium-range precipitation forecasts in several

regions (Wilks 2006; Wilks and Hamill 2007). Few pre-

vious studies have compared the relative performance of

analog techniques and logistic regression techniques for

postprocessingGEFS precipitation forecasts. For selecting

optimal postprocessing methods, it would be informative

to compare the performance of analog methods, which

requires long-term reforecast archives, with logistic

regression, which only needs a small set of training data.

Given the research gaps we have identified, this study

aims to 1) document the performance of the GEFS and

ECMWF daily precipitation ensemble forecasts using

Brazil as case study, 2) evaluate the GEFS-based precip-

itation forecasts postprocessed using analog methods with

different strategies, and 3) compare the performance of

analog-basedmethods with the logistic regressionmethod.

Brazil covers a large area and is considerably affected

by large and intense mesoscale convective systems within

which severe weather events develop (Mohr and Zipser

1996). The complexity of the spatial and temporal vari-

ability of rainfall patterns over Brazil may provide a unique

setting for assessing progresses of global scale NWPs

and postprocessing techniques for rainfall prediction.

2. Data and methods

a. Study region

Brazil is one of the mega-diverse countries and the

world’s fifth-most populous. It has the second-largest forest

area in theworld (FAO2015), is a countrywith high risks of
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transmission of water-borne diseases (e.g., Guerrant et al.

1983), is one of the top hydropower-potential countries

(Zhou et al. 2015), and is one of the world’s main pro-

ducers of food and biofuels (Ferreira et al. 2012). It ranks

first in production of sugarcane, coffee, and oranges and

sixth in the world’s cereal production (FAO 2015). Given

the significant impact of precipitation in those sectors,

forecasting medium-range daily precipitation for Brazil

has great implications for its agriculture, natural resources,

hydropower generation, and public health management.

The study focused on the six major natural biomes of

Brazil: Amazon, Caatinga, Cerrado, Atlantic Forest,

Pampa, and Pantana, representing climatologically con-

sistent regions (Fig. 1). A brief description of each biome

is provided as follows:

1) The Brazilian Amazon covers around 4 million km2

(almost half the national territory), representing

69% of the Amazon basin. Annual rainfall is gener-

ally above 2000mm and decreases from the equato-

rial regions toward the tropics and the northeast of

Brazil (under 1500mm).

2) Caatinga is among the semiarid regions with larger

population and biodiversity in the world (MMA 2011).

Annual rainfall is commonly less than 750mm (Leal

et al. 2005), and it is highly variable (Moura and Shukla

1981). The region experiments a peculiar intra-annual

rainfall regime, with a maximum in March–April over

the north and the center part and in November–March

over the southern part.

3) Cerrado is a tropical savanna covering 22%ofBrazil’s

territory. The overall amount of rain is usually be-

tween 800 and 2000mmyr21 (Ratter et al. 1997),

mostly distributed between October and April.

4) Atlantic Forest is the second-largest rain forest of the

American continent and one of the world’s regions

hosting the biggest biodiversity. Annual rainfall is

between 1000 and 3000mm.

5) The Brazilian Pampa represents 2.07% of the na-

tional territory and lies within the South Temperate

Zone (Roesch et al. 2009). The annual precipitation

in the region is around 1200–1600mm.

6) The Pantanal wetland is a complex of seasonally

inundated floodplains along the upper ParaguayRiver,

located mostly in Brazil (Hamilton 2002). Annual

rainfall is 1000–1500mm across the basin, with most

rainfall occurring between November and March.

b. Verification dataset

The choice of the verification dataset is important in

the context of medium-range forecasting, especially in

data-sparse regions affected by complex patterns of

variability. Using gridded data based on rain gauge

observations has the advantage of being independent of

all models (Hagedorn et al. 2012). Carvalho et al. (2012)

found that the Physical Science Division South America

Daily Gridded Precipitation dataset (Liebmann and

Allured 2005; Liebmann and Allured 2006) consistently

represents the variability of the South American mon-

soon system, which is the most important climatic fea-

ture in South America, and provides a similar spatial

pattern of mean precipitation compared with other

gridded precipitation products such as the Global Pre-

cipitation Climatology Project (Huffman et al. 2001) and

Climate Prediction Center unified gauge (Silva et al.

2007). In this study, we use this dataset for evaluating

rainfall forecasts over each biome in Brazil. It consists

of 18 3 18 grid of daily precipitation values over Brazil

over 1985–2010, interpolated using the average of rain

gauge records within a geographic ellipse. Measure-

ments have been taken at 1200 UTC, while pre-

cipitation is recorded as having occurred on the day on

which the rain gauge reading is taken. This dataset is

available at http://www.esrl.noaa.gov/psd/data/gridded/

data.south_america_precip.html. Figure 2 shows the

cumulative probabilistic distribution of the daily pre-

cipitations over each biome generated from the verifi-

cation dataset.

It is worth noting that at least two other datasets based

on rain gauge observations are available for Brazil. Silva

et al. (2007) produced the Climate Prediction Center

unified gauge. This is a 18 3 18 dataset using a Cressman

(1959) scheme of interpolation (Glahn et al. 1985) that

FIG. 1. Regions of Brazil involved in this study corresponding to the

six major natural biomes as defined in IBGE (2004).
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corrects the background gridpoint value by a linear com-

bination of residuals between calculated and observed

values. However, this dataset has fewer rain gauges

over the Brazilian Amazonian domain compared to the

adopted dataset (see Fu et al. 2013). Recently, Xavier

et al. (2016) produced a high-resolution dataset over

a 0.258 3 0.258 grid based upon the inverse distance

weighting interpolation method; this method had been

identifiedas themost skillfulwhen comparedagainst several

othermethods.However, the grid coordinates in this dataset

do not coincide with the grid coordinates of the forecast

datasets in our study, meaning that a further interpolation

would be needed to use it as our verification dataset.

c. Forecast datasets

1) GEFS REFORECAST DATA

We used 18 3 18 gridded reforecasts over 1985–2010

(26 years) produced from the second-generation global

medium-range ensemble reforecast dataset (Hamill

et al. 2013). This a retrospective weather forecast data-

set generated with the currently operational NCEP

GEFS, available at http://esrl.noaa.gov/psd/forecasts/

reforecast2/download.html. The daily precipitation en-

semble reforecasts considered both the control forecast

and the 10 perturbed forecasts issued at 0000 UTC at

1.5-, 3.5-, and 5.5-day leads. A lead time of 1.5 days

matches up the observation of day n with the sum of the

6-h total precipitation at 18, 24, 30, and 36 h of the

forecast issued at day n 2 1.

2) ECMWF FORECASTS DATA

ECMWF reforecasts archived in the TIGGE database

at ECMWF (see http://apps.ecmwf.int/datasets/data/tigge)

were also considered. We used the 50-member ensem-

bles of perturbed ECMWF forecasts issued at 0000UTC

over October 2006–10 at lead times of 1.5, 3.5, and

5.5 days. Forecasts, which originally have a horizontal

resolution of about 32 km, were converted into a 18 3 18
grid before downloading, using the software available

at the ECMWF website. About 2.0% of the records

accounted for negative, mostly negligible values, which

were set to zero. Probabilities were also calculated di-

rectly from the ensemble relative frequency

d. Postprocessing methods

1) THE ANALOG FORECAST METHOD

In the analog forecast method, the real-time forecast

is adjusted using a long time series of past forecasts and

associated observations (Hamill et al. 2015). Suppose

that we want to produce an ensemble of n analog fore-

casts for today’s forecast at a specific point and a given

lead. The first step is to compare today’s forecasts

within a region surrounding that point with the forecasts

from the historical reforecast archive in that same region

and at the same forecast lead, and then find the n dates

with the best matching. In a second step, the analog

ensemble is formed from the verification dataset on

those dates. This process is repeated for each lead day

and location across the study region, and the forecast

over the grid point is produced by grouping together the

analog forecasts (Hamill et al. 2006; Tian and Martinez

2014). Notice that in some analog-based applications the

resolution of the verification dataset is considerably

larger than that of the forecast dataset, such that the

search region is linked to a tile of verification data points

rather than just one point. In applications like these, the

procedure of tiling the analog forecasts may lead to

spatial inconsistencies at the boundaries between tiles

(Hamill and Whitaker 2006; Hamill et al. 2006). How-

ever, this is not an issue present in this study. Leave-one-

out cross validation are carried out by excluding the current

year from the list of potential analogs. For a detailed

description and theoretical basis of the analog method,

the readers can refer to Hamill and Whitaker (2006).

2) LOGISTIC REGRESSION METHOD

In the logistic regression (LR) method a nonlinear

function is fitted to past pairs of the predictor(s), and

the predictand, which as an observed value takes on a

probability of either 1.0 (event occurred) or 0.0 (event

did not occur), according to the adopted threshold T

(Wilks 2006). The fitted function is then used to estimate

the probability P that the current unknown observed

amount O be higher than the threshold T given the

current predictor values, associated to the forecast.

FIG. 2. Cumulative distribution of the precipitation higher than

1mm over 1985–2010.
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In this study we adopted the same nonlinear function as

Hamill et al. (2008):

P(O.T)5 12 1/[11 exp(a1 bF0:25
pr 1 cs0:25

Fpr
)], (1)

where Fpr and sFpr
represent the mean and the standard

deviation of the ensemble of precipitation forecast, re-

spectively, while a, b, and c are the fitting parameters.

FollowingHamill andWhitaker (2006), we also pondered

using a one-half power transformation of the predictors,

instead of the one-quarter adopted here, but our results

were practically the same.

As for the analog method, the logistic regression

technique is performed separately for each location and

each forecast lead time, within the verification period

using all historical data available.

e. Experimental design

The first experiment is to compare the performance of

GEFS and ECMWF raw forecasts, as well as GEFS

analog forecasts over January, April, July, and October,

from October 2006 to December 2010. These four

months are representative of the summer, fall, winter,

and spring season, respectively. In this and the subse-

quent experiments, training of the GEFS forecasts

considered the 26-yr dataset of retrospective forecasts.

The analog forecasts for a current date and time were

formed by finding the lowest sum of the square differ-

ences (ssd) between the current forecasts and the similar

historical forecasts in the other years (25 in total) from

the reforecast archive, considering a limited region of

9 grid points. Preliminary analyses showed that by con-

sidering tiles of 21 grid points (i.e., those located at a

distance lower than 2
ffiffiffi
2

p
8with respect to the current grid

point), the results tended to be slightly worse compared

with 9 grid points, especially at 1.5 and 3.5 days and

during rainy days. Hamill et al. (2015) suggested using

relatively small grids for short lead times and under

scenarios of heavy rainfalls. The forecasts were selected

within a 645-day window around the date of the fore-

cast, and the best 50 analogs were chosen to construct

the forecast ensemble. The size of the window takes into

consideration the rainfall seasonality over the region (e.g.,

Espinoza Villar et al. 2009), and the fact that the forecast

bias might considerably change across seasons. A size of

the ensemble of 50 members seems reasonable following

the results of Hamill et al. (2015); in our study it represents

just the 2% of the search period (of 91 days 3 25 years).

This analog procedure is adopted as the control variant of

themethod and referred henceforth as ‘‘Control’’ forecast.

The second experiment is to conduct an intercompari-

son among six GEFS-based analog approaches and one

logistic regression method. In this case, the forecasts were

verified over January, April, July, and October from 1985

to 2010. The six analog-based methods included the Con-

trol method plus five modified versions of this procedure

(see Table 1), with each version considering only one

modification with respect to the Control procedure. Each

method is described as follows:

1) Short_reg considered a search region with five grid

points, that is, the current grid point and the four

adjacent grid points at a distance of 18.

2) The 100_Ens was produced with 100 analog mem-

bers, instead of only 50.

3) LogF considered the differences between the logarithm

of the current and past precipitation forecasts plus one,

as the measure of the closeness among forecasts.

4) Prec_water01 included the mean ensemble of the

column precipitable water as a predictor variable.

TABLE 1. Configurations of the six analog approaches. Parameters Fi,t
pr and Fi,t

pw are the 24-h cumulative precipitation (pr) and the total-

column precipitable water (pw) forecasts, respectively, at time t and over grid point i, while Fi,tc
pr and Fi,tc

pw are the corresponding forecasts at

current time (tc) (involving the current grid point and the set of Ns supplemental points surrounding the current grid point) and time t.

ID_Method Ensemble size Grid points Closeness metric

Control 50 9 �
Ns11

i51

(Fi,t
pr 2Fi,tc

pr )
2

Short_reg 50 5 �
Ns11

i51

(Fi,t
pr 2Fi,tc

pr )
2

100_Ens 100 9 �
Ns11

i51

(Fi,t
pr 2Fi,tc

pr )
2

LogF 50 9 �
Ns11

i51

[log(Fi,t
pr 1 1)2 log(Fi,tc

pr 1 1)]
2

Prec_water01 50 9 0:93

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

Ns11

i51

(Fi,t
pr 2Fi,tc

pr )
2

s
1 0:13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

Ns11

i51

(Fi,t
pw 2Fi,tc

pw )
2

s

Prec_water05 50 9 0:53

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

Ns11

i51

(Fi,t
pr 2Fi,tc

pr )
2

s
1 0:53

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

Ns11

i51

(Fi,t
pw 2Fi,tc

pw )
2

s
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The analogs were produced by pondering the 90% of

the ssd of total precipitation plus the 10% of the ssd

of precipitable water.

5) Prec_water05 is similar to Prec_water01, but consid-

ering the 50% of ssd of both total precipitation and

precipitable water.

Besides these five methods, we had pondered the rank

analog technique (Hamill and Whitaker 2006), which

used the differences between the rank of the precipitation

forecasts within the search region as the similarity mea-

sure. However, this method was found unsuitable for the

conditions of Brazil and was therefore excluded. By

matching ranks instead of the actual values, many

members of the analog ensemble corresponded to dates

whose precipitations over the search region follows the

same order (rank) compared to the current day, but whose

total amounts are dramatically different. For example, the

method often matched a heavy rainfall at the current day

with drizzle in the past.

f. Verification analysis

In this study we compare point and regionally aggre-

gated values (see Medina et al. 2018) of several deter-

ministic and probabilistic metrics. For the deterministic

metrics, we used the mean error (ME), the root-mean-

square error (RMSE), and correlation coefficient r,

which are among themost commonly reportedmeasures

of agreement between forecasts and observations. For

the probabilistic metrics we used the Brier skill score

(BSS) and the reliability diagram (e.g., Toth et al. 2003;

Wilks 2011) associated with the precipitation events

above 2.5mm. In the study the forecast probability is

calculated from the ensemble forecast, while the clima-

tological probability is computed as an average proba-

bility taken over 630 days of the forecast date. A

bootstrapping procedure involving 1000 samples was

used to quantify the uncertainty of the probabilistic

statistics (see Medina et al. 2018).

3. Results and discussion

a. Intercomparisons between GEFS, ECMWF, and
Control analog postprocessed forecasts

Figure 3 shows the average correlation and RMSE of

the raw GEFS forecasts in each region, and their differ-

ences with the ECMWF forecasts and the Control analog

forecasts. The average correlation varied especially among

regions: from high values over Atlantic Forest and Pampa

FIG. 3. (a) Correlation and RMSE (mm) of the GEFS precipitation raw forecasts at each biome in January (1),

April (4), July (7), andOctober (10), for lead times of 1.5, 3.5, and 5.5 days, and (b) differences between correlation

and RMSE of the ECMWF raw forecasts as well as the Control calibrated forecasts and the GEFS raw forecasts.
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to very weak values over Amazon. The RMSE was pro-

portional to the total rainfall and therefore more season-

ally driven, with maximums during warm seasons, and

minimums during cold seasons. Janowiak et al. (2010)

noted very weak correlation between the ECMWF and

GEFS forecasts and the Global Precipitation Climatology

analyses over the northwest of South America in warm

seasons. The ECMWF and GEFS raw forecasts performed

comparably at 1.5 days, but the former performed better,

even compared with the Control analog forecasts, at 3.5 and

5.5 days. The performance of the GEFS forecasts mostly

improved through postprocessing; the analog control fore-

cast provided the best correlation and RMSE at 1.5 days.

Moreover, as indicated in Fig. 4, the Control analog GEFS

forecasts showed greater ME than both GEFS and

ECMWF raw forecasts. They tended to underestimate the

precipitations in most regions, seasons, and lead times.

Figure 5 presents the distribution of the bootstrapped

BSS values over each region and month at lead times of

1.5 and 5.5 days. The Control analog forecasts in most

cases improved the BSS compared to the raw ensemble

forecasts. The improvements tend to be higher over

regions and seasons, such the spring month in Amazon

and the fall month in Pantanal, where raw forecasts are

less skillful. Practically all the Control analog forecasts

provided a positive BSS, although it was still close to

zero in Amazon. The raw ECMWF forecasts showed

higher probabilistic forecast skill than the raw GEFS

forecasts at 3.5 and 5.5 lead days, but lower at 1.5 days.

Both of the ECMWF and GEFS raw forecasts showed

no skill over Amazon and Pantanal at any lead time,

indicating that the climatological predictions are better

here compared to the raw forecasts. This result is con-

sistent with the study based on regional ensemble fore-

casts over South America (Ruiz et al. 2009). The reason

for that is due to the convection in theAmazon exhibiting

more pronounced diurnal and seasonal variability than in

the east region (Jones and Schemm 2000).

To provide a better insight in space, Fig. 6 shows the

differences between the Brier scores of the raw ECMWF

and GEFS ensemble forecasts at each grid point. Positive

differences indicate the GEFS forecasts are better, since

the lower the Brier score the better the forecasts. The

ECMWF forecast seems relatively weak over the northwest,

mainly at 1.5 days, probably due to issues with the model

representation of the daily precipitation cycle over

Amazon (Betts and Jakob 2002a,b). Similarly, the

GEFS forecast are unskillful over this region as well. The

differences in October, a period associated with the onset

of the precipitations in most Brazil (Marengo et al. 2001;

Grimm and Zilli 2009), are the most favorable for the

GEFS forecasts, while those in January (a period of higher

convection) are the most unfavorable, at both lead times.

The ECMWF forecasts at 3.5 and 5.5 days in several

cases provided better RMSE and BSS than the forecasts

at 1.5 days, while the bias of the ECMWF at 5.5 days

tended to be negative while the bias at 1.5 days is posi-

tive (Fig. 4). These trends were not observed for the raw

and postprocessed GEFS forecasts. This finding is con-

sistent with Janowiak et al. (2010), who found that the

9-day ECMWF raw forecasts had lower bias than the

day-2 forecasts over much of central South America. To

investigate what caused the better performance at lon-

ger lead times, we analyzed the spread–skill relation-

ships of different forecasts at 1.5 and 5.5 leads, by

comparing the average standard deviation of the en-

sembles to the RMSE of the ensemble means for dif-

ferent intervals of the deviations (Fig. 7). The result

showed that, while the spread of the GEFS ensembles

(both, raw and postprocessed) was similar at different

lead times, the ECMWF ensembles at 1.5 lead days were

more underdispersed than 5.5 lead days. The wider spread

of the ECMWF ensemble forecasts at longer lead times

compared to shorter lead times may cause the better

performance for longer lead times. The results also

suggest that the forecast postprocessing with the analog

technique considerably improves the spread–skill re-

lationship of the ensembles.

FIG. 4. ME (mm) of the raw GEFS and ECMWF and the Control

analog precipitation forecasts at each biome in January (1),April (4),

July (7), and October (10), for lead times of 1.5, 3.5, and 5.5 days.
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Figure 8 shows the reliability diagrams over January at

lead days of 1.5 and 5.5. In general, the forecasts were

slightly less reliable in drier months when high-probability

precipitation forecasts are issued less frequently. The

postprocessed forecasts were considerably more reliable

but less sharp than raw forecasts. The frequency of

medium-probability forecasts grows after postprocessing

mainly at the expense of the high-probability forecasts, as

FIG. 5. BSS of the raw GEFS and ECMWF and the Control analog precipitation in (from left to right) January

(blue), April (yellow), July (green), and October (red) for lead times of 1.5 and 5.5 days.
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found by Hamill et al. (2008). The GEFS and ECMWF

raw forecasts provided similar reliability at 1.5 lead days,

while the former one seemed slightly less reliable at

5.5 days. While the reliabilities are not considerably

changed with lead times, the sharpness at shorter lead

times is slightly higher than longer lead times, especially

for the ECMWF forecasts. This may be caused by the

narrower ensemble spread at shorter lead times. It

is also worth noting that through postprocessing, the

reliability of the precipitation forecasts improved more

than the skill score, which is in agreement with previous

studies based on, either analog postprocessing tech-

niques (e.g., Voisin et al. 2010), or other methods

(Hamill et al. 2008).

In summary, the Control analog forecasts consider-

ably improved the probabilistic forecasting performance

but more systematically biased compared to the GEFS

and ECMWF raw forecasts. They were also slightly less

FIG. 6. Differences between the ECMWF and the GEFS BSS for 1.5 and 5.5 lead days.

FIG. 7. RMSE of the ensemble forecasts vs the mean standard deviation s of the ensemble members over all grid points and at 1.5 and

5.5 lead days for (from left to right) raw GEFS, raw ECMWF, and Control analog forecasts.
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correlated with observations and less accurate than the

ECMWF forecasts at 3.5 and 5.5 days. The performance

of the raw ECMWF andGEFS forecasts was comparable

a 1.5-day lead, but the ECMWF forecasts performed

better at the longer lead times.

b. Comparing multiple analog approaches and the
logistic regression approach

Figure 9 shows cumulative probability distributions

of the correlations, the ME, and the RMSE using raw

GEFS forecasts and the six analog approaches over

January and at 1.5-day lead. The trends were similar

across different regions and lead times. The analog

forecasts improve the correlation and the RMSE com-

pared to the raw forecasts, while they are more biased

than the raw forecasts. This last is a deficiency princi-

pally caused by the skewness of the density distribution

of the forecast precipitation (e.g., Scheuerer and Hamill

2015), meaning that the probability density of lighter

precipitation events in a neighborhood around the mean

is higher than the probability of heavier events. The used

loss function, that is, the squared differences between

current and past forecasts, might have also contributed

to that issue, since it tends to provide large penalties to

the large discrepancies (Casella andBerger 2002).Hence,

reforecasts associated to lighter events are more likely to

be (indirectly) represented in the analog ensembles (e.g.,

Hamill and Whitaker 2006).

A paired sample t test was conducted to compare the

performance of the six analog forecasts. The result

FIG. 8. Reliability diagrams of theGEFS and ECMWF raw forecasts, and the Control analog forecasts for January for days11.5 and15.5.
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shows that the differences of the six analog methods are

small in correlation andME but mostly significant at the

1% significance level; the differences in RMSE values

are less significant, especially for comparisons among

the Control, Sort_reg, and Prec_water01 approaches.

The changes in ME and RMSE after postprocessing

seemed roughly constant among grid points, while the

correlation improved more over grid points with higher

correlations, that is, regions with better correlation were

more benefited through postprocessing. Among all the

six methods, the 100_Ens and LogF forecasts commonly

provided the best correlations and ME and RMSE,

respectively. In most cases, the Prec_water05 forecasts

perform the worst among all the analog forecasts.

For probabilistic forecasts, all the analog forecasts, as

well as the LR forecasts considerably improved the BSS

compared to the raw forecasts (Fig. 10). The improve-

ments were similar but mostly significantly different at

1% significance level. In agreement with previous

studies (e.g., Hamill andWhitaker 2006; DelleMonache

et al. 2013), the forecasts produced with analog methods

provided better skill compared to the logistic regression.

Only the Prec_water05 forecasts performed similarly or

slightly worse than the LR forecasts. While the 100_Ens

forecasts commonly provided better BSS over West

regions, where the skill is consistently low, the Log_F

forecasts provided better skill over the East regions. The

average BSSs weremostly below 0.3, and affected by the

considerable spatial and temporal variability of the BSS

(Fig. 11). As suggested by the maps of Brier score of the

climatology in Fig. 12, this variability seemed associated

with the climate predictability. Climate predictability

changes from high in the winter all over the center of

Brazil to very low in summer practically all over the

country. It is influenced by the interannual migration of

deep tropical convection from the central and southern

portion of the Amazon basin in summer to the north-

western sector of South America in winter (Rao and

Hada 1990).

Figure 13 shows the reliability diagrams of the raw and

postprocessed forecasts over January at 1.5 days lead.

The postprocessed forecasts performed very similarly:

they were considerably more reliable but less sharp than

the raw forecasts. Only the 100_Ens forecasts showed a

slightly dry bias over a few regions. Our postprocessed

forecasts are slightly more reliable than the analog

forecasts from Hamill and Whitaker (2006) and the lo-

gistic regression forecasts from Hamill et al. (2008),

probably due to the new improvements of the GEFS

model compared to its first version (Hamill et al. 2015).

c. Discussing analog postprocessing methods for
precipitation forecasts

While the comparison between raw and postprocessed

forecasts in section 3a only involved one analog approach,

the results from this comparison also seemed valid for the

other postprocessing methods. This is because the differ-

ences among postprocessing methods were lower than the

FIG. 9. Cumulative distribution of the correlations, ME, and RMSE for the raw and analog GEFS forecasts at 1.5 lead days in January.
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differences among raw and postprocessed forecasts.

Nonetheless, different methods in most cases provided

significantly different statistics, allowing us to identify

a best and a worst strategy. In Table 2 we show the

number of experiments (of a total of 72, i.e., 6 regions3
4 months 3 3 lead times) where each analog approach

performed best and worst in terms of correlation, ME,

RMSE, and BSS. We also provide a ranking of the

methods by sorting the differences between totals, from

better to worse. The LR-based performance was con-

sidered when comparing the BSS, but not ranked. LogF

was identified as the best approach, ranking as the best

or the second best in terms of all the performance sta-

tistics. Taking the logarithm of the mean precipitation

is a way of partially addressing the issues associated to

the skewness of the forecast density distribution, by

making the approach less prone to penalize the heavier

events with respect to the lighter events. This confirms

the results of Foresti et al. (2015) for who the logarithmic

transformation is necessary to get a suitable represen-

tation of the forecast uncertainty.

The 100_Ens approach was the second best since it

provides the highest BSS and correlations but also has

relatively largeME andRMSE. The larger the sample of

ensemble members, the better the probabilistic descrip-

tion of the events, but also the larger the issues for finding

sound analogs on rainy days, especially for regions with

lower pluviometry. Therefore the choice between the

FIG. 10. Mean BSS of the raw GEFS forecasts, the analog calibration methods, and the logistic regression

method in the six regions.
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FIG. 11. BSS values of the basic analog technique in space from 1985 to 2010.
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LogF and the 100_Ens scheme might be subject to the

specific purposes of the application. These results led to

the question whether an analog method combining

the modifications adopted in Log_F and 100_Ens (100_

Ens-LogF) improve the performance compared to each

of these two approaches. We found that it slightly im-

proved the performance of the original approaches by

taking advantage of their best features, since it is less vul-

nerable than the 100_Ens method to large deterministic

errors because of the log transformation, and at the same

time performs probabilistically slightly better because of

the larger sample size. It provided consistently better BSS

than the Log_F and 100_Ens strategies, although the im-

provements only affected the third significant figure. It also

improved the ME compared with the 100_Ens strategy,

but not compared with the Log_F strategy.

Finally, the Prec_water05 scheme performed worst

for most statistics, especially during fall and winter times

(e.g., Fig. 10), distantly followed by the Short_reg scheme.

Studies suggest that there is a weak relationship between

precipitable water and precipitation in most regions

(e.g., Rao and Da Silva Marques 1984; Teixeira and

Satyamurty 2007), presumably because of the complex

regimes of water vapor and rainfall, which are generally

regulated by the ocean on the east, a steep orography on

the west, and the Amazon forest on the north (Berbery

and Collini 2000; Rao et al. 1996).

4. Concluding remarks

This study conducted intercomparisons between raw

GEFS forecasts, raw ECMWF forecasts, and postprocessed

GEFS forecasts with six analog methods and the logistic

regression method over six biome regions in Brazil. To

the authors’ knowledge, this study is the first to compre-

hensively examine the performance of these global-scale

FIG. 12. Brier score of the climatology in space; 2.5mm is used as a threshold.
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NWP models and statistical postprocessing methods

over South America, specifically over a region severely

affected by large mesoscale convective systems.

The article showed that the global-scale NWP’s raw

forecasts are helpful for precipitation forecasting over

the east, and particularly the southeast, of Brazil, but

unskillful over the northwest. TheECMWF raw forecasts

are better than the GEFS raw forecasts since they per-

form similarly or better over the east. However, the

postprocessed GEFS forecasts, particularly the analog

forecasts, are strongly recommended over the raw

ECMWF forecasts as they performed probabilistically

much better; unlike the raw forecasts they improved the

skill of climatological forecasts in all the evaluated re-

gions, seasons and lead times. Our results also confirmed

previous findings showing that the analog forecasts tend

to be negatively biased: this study suggests that the larger

the size of the analog ensemble, the higher the bias.

FIG. 13. Reliability diagrams for the GEFS-based precipitation forecasts in January. Each panel indicates each reliability diagram

of the methods including raw GEFS, six analog methods, and logistic regression.

TABLE 2. Number of experiments (considering 6 regions, 4 months, and 3 lead times) where the alternative analog approaches performed

the best and worst in terms of different metrics.

Correlation ME RMSE BSS

Method Best Worst Best Worst Best Worst Best Worst Ranking

Control 2 3 0 3 2 1 1 1 4

Short_reg 1 22 3 2 2 4 0 9 5

100_Ens 57 1 0 33 8 16 37 1 2

LogF 7 1 60 0 48 2 24 0 1

Prec_water01 3 1 4 1 11 4 5 0 3

Prec_water05 2 44 5 33 1 45 3 28 6

LR 2 33
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The forecast performance showed less sensitivity to

the postprocessing strategy than to the postprocessing

itself. Nevertheless, different postprocessing strategies

are significantly different statistically, with the analog

forecasts being as reliable as the logistic regression

forecast but slightly more skillful. The strategy considering

the log of current and past reforecasts as the measure of

closeness performed slightly better among all the analog

forecasts, followed by that considering 100 analog mem-

bers (instead of the regular 50). The analog method com-

bining modifications adopted in these two approaches

performed slightly better than the individual approaches,

whereas the strategies that included precipitable water as a

predictor variable were among the worst.

This study provides useful information for precipita-

tion forecasting over tropical and subtropical regions

affected by large mesoscale convective systems. While

we have addressed the impact of the forecast uncertainty

on the performance by using bootstrap analysis, we have

not addressed the impact of the verification dataset

uncertainty. The quality of interpolated datasets in data-

sparse regions is always a source of concern. While we

tried several analog-based schemes, new analog strate-

gies are emerging in literature, which may further

improve the precipitation forecasting in Brazil. For ex-

ample, the hybrid NWP–analog method (Eckel and

Delle Monache 2016), seizes both the strengths of the

numerical weather prediction ensemble and the analog

ensemble, and could be used for efficiently combining

the ECMWF and GEFS raw forecasts. Recent ap-

proaches also explore methods based on different

synoptic-scale predictors (Horton and Brönnimann 2019;

Horton et al. 2018; Ben Daoud et al. 2016), such as the

geopotential height, and temperature, while excluding

precipitation as a predictor, as a way to avoid common

issues with precipitation reanalysis (e.g., Caillouet

et al. 2016).

More research is needed for further decreasing the

forecasting uncertainty, especially over the Amazon.

We foresee future studies will evaluate the efficacy of

multimodel forecasts and other postprocessing methods

with the consideration of the uncertainty from the ver-

ification dataset, in particular focusing on the methods

that can perform well with much shorter training

datasets.
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